
Home
About/Contact
Newsletters
Events/Seminars
2020 IPS Conference
Study Materials
Corporate Members
Home
About/Contact
Newsletters
Events/Seminars
2020 IPS Conference
Study Materials
Corporate Members
We introduce a three-dimensional model for jamming and glasses, and prove that the fraction of frozen particles is discontinuous at the directed-percolation critical density. In agreement with the accepted scenario for jamming- and glass-transitions, this is a mixed-order transition; the discontinuity is accompanied by diverging length- and time-scales. Because one-dimensional directed-percolation paths comprise the backbone of frozen particles, the unfrozen rattlers may use the third dimension to travel between their cages. Thus the dynamics are diffusive on long-times even above the critical density for jamming. Preprint: arXiv:1310.8273